
S3 Coursework Report: Automated ROP Exploit
https://github.com/jackbondpreston/security-cw

Jack Bond-Preston
jb17662@bristol.ac.uk

Liam Dalgarno
ld17285@bristol.ac.uk

Chris Gora
kg17815@bristol.ac.uk

1 Introduction

In this assignment we extended Return Oriented Programming
(ROP) exploitation techniques introduced in Lab 4. This lab
introduced a python tool called ROPGadget1. We modified
ROPGadget and built a wrapper around it. This allowed us to
make the ROP attack far more automated. We implemented
the following:

• Automated offset detection.

• Arbitrary arguments to the execve syscall.

• Detecting and mitigating the presence of null bytes in
addresses in the data segment.

2 Background

Return Oriented Programming [1] is at its core a stack buffer
overflow vulnerability. This happens when an attacker writes
more bytes to memory than can fit into the size of the buffer,
hence placing arbitrary data in the stack frame (often referred
to as “smashing the stack”) [2]. If the overflow is large enough,
it will extend to the location of the saved return address of the
currently executing function. As a result, a function can be
forced to return to any arbitrary place in memory, rather than
to its caller. The stack still remains non-executable in this sce-
nario. The attack has to be formed using existing instructions
which are followed by ret – these are known as gadgets [1].
The ret instruction will pop the next instruction address off
of the stack and into the Extended Instruction Pointer (EIP),
allowing for chaining of gadgets. A series of gadgets that
is used to execute code is referred to as a ROP chain. ROP
gadgets can be found and searched automatically [3], even
in some cases “blindly” (remotely and without access to the
executable’s binary content) [4].

This is extremely powerful - with a sufficiently large pro-
gram, and thus sufficiently large pool of available gadgets,

1https://github.com/JonathanSalwan/ROPgadget

ROP chains are Turing complete [1, 5]. Thus, it follows that
any shellcode can be executed through ROP [6, 7].

The method of ROP exploitation used in the lab was highly
manual. It was the user’s responsibility to find the correct
padding length to overwrite the EIP. ROPGadget is also lim-
ited to only spawning a shell using an execve("/bin/sh")
syscall. It therefore hard-coded which gadgets it looks for.
It was not possible to automatically execute any other type
of shellcode or syscall. This means that this tool can only
produce very limited ROP chains.

2.1 Existing Tools
On the other hand, there is a range of other tools which pro-
vide more advanced capability. A small selection is discussed
below:

pwntools2 - This is a very extensive tool aimed towards
Capture-The-Flag (CTF) competitions. It can analyse a bina-
ries for various architectures and then automatically generate
a ROP chain.

Ropper3 - This is a tool similar to ROPgadget, but with
a few more features. It has the ability to generate a ROP
chain for arbitrary execve arguments (along with a few other
predefined shellcodes). It is also effectively a search engine
for various ROP gadgets. However, rather than searching for
raw assembly, its unique capability is semantic search. It has
a basic understanding of the actual semantics of gadgets, and
their side effects. The user can specify a constraint such as
eax == 1 !ebx. This will find all gadgets that can assign
number 1 to eax while making sure that ebx isn’t clobbered.
It will also show a list of clobbered registers for each result
of a general search, again utilising the semantic analysis of
the gadgets.

ROPC4 - A proof-of-concept compiler which creates ROP
chains from an arbitrary shellcode written in a custom high-
level language called ROPL.

2https://github.com/Gallopsled/pwntools
3https://github.com/sashs/Ropper
4https://github.com/pakt/ropc

1

https://github.com/jackbondpreston/security-cw
mailto:jb17662@bristol.ac.uk
mailto:ld17285@bristol.ac.uk
mailto:kg17815@bristol.ac.uk
https://github.com/JonathanSalwan/ROPgadget
https://github.com/Gallopsled/pwntools
https://github.com/sashs/Ropper
https://github.com/pakt/ropc

aaaabaaacaaadaaaeaaafaaagaaahaaa

Figure 1: Output of cyclic(32).

3 Design & Implementation

Throughout the steps of this coursework we only target ELF
x86 (32-bit) binaries. These were compiled on a Vagrant-
backed Ubuntu 18.04 VM (Kernel 4.15.0-124) with GCC
7.5.0 – statically linked (-static) and with the stack pro-
tector disabled (-fno-stack-protector).

3.1 Step 0
Originally, ROPGadget generated a Python file which had to
be modified by the user (fixing the syntax, setting the padding,
etc.) This created an unnecessary extra step for our task of
creating an automatic tool. Due to this, we opted to modify
ROPGadget to directly save the ROP string to a file.

3.2 Step 1
One of the main shortcomings of ROPGadget is that it requires
a user to manually add padding of the correct length, so that
the saved return address can be overwritten. We automated
this process.

In our main utility Python file (autoRop.py), we generated
a special input string using pwnlib.util.cyclic, initially of
length 32 – an example of which is demonstrated in Figure 1.
Each set of 4 bytes in this string is unique. We then ran
the executable we were analysing using this string as input.
We repeated the process, each time doubling the length of the
input string, until the program crashed or we hit a configurable
limit (at which we assumed the buffer overflow to not be
viable). A crash implied that the buffer overflow reached and
changed the EIP. We then read the last value of EIP from
the core dump, using pwnlib.elf.corefile. Due to the
uniqueness property of our input string, we used this value to
determine the exact offset required for the padding.

A problem with this method is that it relies on core dumps,
which may not be generated for a variety of reasons. Most no-
tably, the kernel parameter fs.suid_dumpable [8] must be
set to 1 or 2 to generate core dumps for setuid programs.
This is insecure and therefore unlikely to be set (and is
not by default). Without support for setuid programs, privi-
lege escalation attacks through ROP would not be possible.
Therefore, as an alternative, we simply brute force the off-
set. This is achieved by preparing a ROP chain which exe-
cutes ‘/bin/echo "[ROP Successful!]"’, and then in-
crementing the padding length until the ROP chain is executed.
This method does not rely on reading the EIP from the core
dump, therefore it is more versatile. We subsequently mod-
ified the ROPGadget code to accept the generated padding
length, with the command-line flag --paddingLen.

["/bin/netcat", "-lnp", "5678", "-tte",
"/bin/sh"]

Figure 2: An example rop_exec.json file.

Another thing we considered is that programs generally
read input in the following ways: command-line arguments,
reading from a file, and reading from stdin. We supports all
three of these methods to pass the payload, by changing the
command line argument --input_method. When passing
the payload as a program argument, other arguments and the
placement of the payload at a custom argument position are
supported. It reads a file containing the argument layout, in
this case it is simply:

["$PAYLOAD$"]where $PAYLOAD$ is programatically replaced with the gener-
ated ROP chain.

This now gives us an automated workflow for generating
and executing the ROP attack. The autoRop.py script does
three things:

1. Find the padding length necessary to overwrite EIP.

2. Execute the customised ROPGadget script with this
padding length to generate the ROP chain for the tar-
get executable.

3. Execute the target vulnerable binary with the generated
ROP chain as its input. This binary can optionally be
executed in an interactive mode.

3.3 Step 2
Originally, ROPGadget generated a ROP chain for a
predefined execve("/bin/sh", ["/bin/sh"], NULL)
shellcode. execve takes three arguments: const char
*pathname, char *const argv[], and char *const
envp[]. In this step we added the ability to modify both the
pathname and argv arguments. execve is a syscall, which
means that it is invoked with int 0x80. On Linux x86,
arguments are stored in registers in the following order: eax,
ebx, ecx, edx, esi, edi, ebp, where eax stores the unique
syscall identifier. Therefore, we store pathname in ebx, and
argv in ecx.

We opted to pass the custom pathname and argv into ROP-
Gadget using a JSON file. This is because parsing arguments
manually creates issues, for example with quotation marks or
spaces. The JSON file contains an array of strings consisting
of the executable to run and arguments to pass to it (with im-
plicit argv[0] = pathname). An example of this is shown
in Figure 2.

We modified the ROPGadget code to allow the writing of
an arbitrary pathname string. ROPGadget uses the .data
segment as a ‘pseudo-stack’, which it can write to using mov
[<reg>] <reg> gadgets as demonstrated in Figure 3. Gener-
ally, the source data is popped from the stack into the register
src, then the target address is popped from the stack into dst.

2

pop eax; ret;
pop edx; ret;
mov [edx], eax; ret;

Figure 3: Example gadgets which can be used to write to an
arbitrary address in memory.

Figure 4: An example of argument chunking.

Finally, the data is written to the target address using mov
[dst], src. Since the data being written is stored in 32-bit
registers, it must be written in blocks of 4 bytes. In order to
achieve this, we pad the string so that its length is a multiple
of four. We use forward slashes (/) at the front of the string as
the padding. For example, the executable name "/bin/sh"
is written as ["//bi", "n/sh"]. At the end, we use gadgets
to append four null bytes to terminate the string.

We then allowed the execution of execve with an arbitrary
argv argument. As opposed to the pathname padding, there
are no "safe" characters that can be appended or prepended
to make the arguments have a length divisible by 4 – for ex-
ample, appending or prepending spaces does actually change
the operation of many target programs. To give us strings for
which all lengths are divisible by four, we append exclamation
marks (!) to the end of each argument as placeholder charac-
ters. We then chunk each argument into strings of length 4.
An example of this process is illustrated in Figure 4.

Each argument is written chunk by chunk. We then write
4 null bytes at the location of the first placeholder !. This
is to overwrite the placeholder characters and terminate the
string at the correct location. Now that the argument strings
are in memory, we construct the argv array. We first write
the address of pathname, followed by the addresses of each
individual argument string. 4 null bytes are then appended,
as the argv array must be null terminated. An example of
this data in memory is shown in Figure 5. The address of this
array in memory can then be passed in ecx to execve.

The user may execute any program that they like, and some
programs may be interactive, such as a shell. For this step,
we added a command line argument --interactive which
uses pwnlib.tubes.interactive to attach to the program
and emulate an interactive terminal. Without this argument,
our tool simply dumps the output of the program to stdout.

3.4 Step 3
The original ROPgadget tool could fail when the data segment
addresses it writes to contained null bytes. This was because

when the ROP chain input is being treated as a string, any
null bytes would be seen as the null terminator of said string.
We fixed this by checking if the start of the data segment is
even. If it is, we add 1 to make it odd. This ensures that the
data addresses we write to will not end with a null byte. This
is the most likely place for a null byte to appear, because the
least significant bits change as we write our data but the most
significant are not likely to unless the input is very large.

We also check if the data segment address contains a null
byte at any location other than the end. If it does we replace
the 0x00 with a 0x01, such that we change the address by the
minimum possible amount while still removing the null byte.

We ensured this solution was working correctly by compil-
ing a test program using the linker option -Tdata <address>
to set the data segment start address to various addresses con-
taining null bytes. The tool proved effective against these data
addresses.

3.5 Step 4

We did not implement step 4. We did extensive research on
potential solutions to it, however, we were not able to come
up with a solution reasonable to implement in the given time
frame. Below we discuss existing successful solutions as well
as our own ideas and the issues surrounding them.

Shell-storm5 contains a repository of known working shell-
code for a variety of architectures. We first analysed these to
get an idea of the general structure of shellcode. A key assump-
tion of shellcode is that it is placed in an executable segment
of memory and thus free to use any instruction. Therefore,
shellcode can modify registers freely, while ROP is limited
by gadget register assignment and clobbering. This severely
limits how ROP can use registers because register usage in
programs is quite limited: registers tend to be used for specific
purposes, such as eax for arithmetic operations and ebx for
pointing to memory locations. Converting a shellcode’s free
use of registers to gadgets requires analysis of which registers
are currently available and which registers a gadget clobbers.

Furthermore, in ROP, we cannot freely push to and pop
from the stack. Our ROP relies on the stack containing very
specific data, to ensure rets will return us to the correct loca-
tion. To be able to execute arbitrary shellcode, it is necessary
to emulate the stack in the .data segment. This can be done
by converting all push instructions to a write to memory,
and pop instructions to a read from memory. A virtual stack
pointer can be kept track of by the compiler to know where
to write to/read from, and offset accordingly after each stack
operation. One problem this causes is that it consumes too
many registers. A normal push/pop only involves one gen-
eral purpose register. This memory stack approach requires at
least two of our usable registers – one to hold the destination
memory address, and one to provide/receive the value. This

5http://shell-storm.org/shellcode/

3

http://shell-storm.org/shellcode/

Figure 5: An example .data layout for the netcat remote shell ROP chain. Empty cells indicate unknown and unneeded
contents (never manually overwritten).

is also the reason that banking registers to aid in register man-
agement actually ends up being detrimental, as banking one
register involves overwriting another with a memory address.

One existing solution, fuck-riscv-rop6, implements a Brain-
fuck to ROP compiler [7], allowing for Turing-complete
ROP computation. A buffer in memory is used to implement
Brainfuck’s tape. However, this relies on a “self-modifying
ROP” technique to deal with register clobbering issues by
saving/restoring registers around these gadgets, which is
specific to the RISC-V architecture. It also only targets
glibc-2.30.9000-29.fc32.riscv64 specifically.

3.5.1 Q

Schwartz et al. show an implementation of compiling arbitrary
shellcode into a ROP chain [9]. It uses a custom high-level
language called QooL to define the shellcode. Q claims to
be able to effectively generate ROP chains for 80% of Linux
binaries greater than 20KB in size.

Q works by analysing the semantics of gadgets. Instead
of searching for predefined gadgets (e.g. mov eax, ebx), it
searches for groups of instructions for which the semantics
are useful (e.g. imul 1, eax, ebx is a move gadget). This
allows it to find a much larger selection of gadgets, which
gives a lot more flexibility in target binaries. Each gadget is
identified with a specific type (e.g. certain types of moves,
or memory stores). This is defined by a postcondition which
must be true any time the gadget is executed.

Once the gadgets in the target binary have been identified,
a complex compiler is used to assign and arrange them into a
working implementation of the QooL program. This process
is very involved due to all the interdependencies of differ-
ent gadgets, and the limited amount of register space (and
inability/ineffectiveness of banking them).

The Q source code is not available, however the paper
claims that the program is 4585 lines of OCaml code. ROPC

6https://github.com/garrettgu10/fuck-riscv-rop

(as mentioned in Subsection 2.1) is an implementation based
on Q, which comes in at 4675 lines of OCaml code. Both of
these were written by highly accomplished experts. Thus, we
did not consider it possible to complete an implementation of
Q for this coursework.

4 Evaluation

4.1 Automation

Our aim of automating the ROP attack has been successful.
Compared to ROPGadget, our tool is able to generate com-
plete ROP chains for any arbitrary execve syscall with any
argv argument. Unlike ROPGadget and Ropper, we can auto-
matically calculate the correct length of the padding so that
the EIP is overwritten. Executing a ROP exploit with our tool
is a one-step process: the user simply has to provide a binary
and we will automatically prepare and execute the attack. The
aforementioned tools require the attacker to perform this step
manually. Our range of automated ROP features and automa-
tion is comparable to the offering of pwntools (discussed in
Subsection 2.1).

4.2 Arbitrary Execution

The ability to execute an arbitrary execve syscall is the most
important improvement on ROPGadget. It means that the
range of attacks is much greater and it offers many more
opportunities to the attacker. An example of this would be
where the target program is not accessible via. an interactive
shell. Here executing /bin/sh would not be a useful attack,
as the attacker would have no access to the executed shell.
With our solution, a remote shell can be launched by choosing
to launch netcat (or similar) with execve.

4

https://github.com/garrettgu10/fuck-riscv-rop

4.3 Non-Executable Stack
Modern systems such as Linux use a strategy often referred to
as W⊕X (writable XOR executable) and mark each page of
memory either as executable (and thus read-only) or as non-
executable (and potentially writable) [1]. The stack is always
writable, thus cannot be executable. By definition, a ROP
attack does not require an executable stack (or any writable
executable memory), as it re-uses the existing program code
in the (executable) text segment without needing to modify it
and can therefore bypass any hardware non-executable stack
protections (such as the Intel XD bit and AMD NX bit) [10,
11, 1].

4.4 Target Support
There are certain flaws with our project when compared to the
open-source alternatives. We currently limited the scope of
our ROP chain generation to Intel x86 ELF binaries. This acts
as a proof of concept which could then in future be translated
to other executable types and architectures. ROP attacks have
been successfully demonstrated on other architectures such
as Arm [12], RISC-V [7] and SPARC [13], as well as other
binary formats such as Windows PE binaries [6].

We tested our program on the following selection of target
binaries:

1. null-data-addr: A copy of the vulnerable program from
the lab which is compiled with -Tdata 0x080f0000. This
program takes a file name as its only argument, and the
buffer overflow exploit occurs upon reading this file (which
we place the ROP chain into). Our program successfully
mitigates the null bytes in the data address and the gener-
ated ROP chain is successful.

2. elf-Linux-x86 / elf-Linux-x86-NDH-chall:
These are 32-bit Linux executables from the
test-suite-binaries subdirectory of ROPGadget.
They take a string argument, and this has a buffer overflow
vulnerability. Our program is able to successfully find the
offset and execute a ROP chain.

3. crashmail: As a real world example, we took a vulnerable
version (1.6) of Crashmail II7. This has a buffer overflow
vulnerability when the SETTINGS option is used. We set up
our exec_args.json file as follows:

["SETTINGS", "$PAYLOAD$"]

and the exploit is successful!

Our testing shows that our program is able to find the offset
and generate an appropriate ROP chain for an array of vulner-
able programs, which take the exploit input in different ways
(argument string, payload file, stdin).

7https://www.exploit-db.com/exploits/44331

4.5 Stack Protector
Our solution is not effective if Stack Smashing Protec-
tion (SSP) was enabled when the target binary was com-
piled. For all our test binaries we compiled with the
-fno-stack-protector flag to disable this.

The stack protector prevents our ROP exploit via the fol-
lowing mechanism [2, 14]:

1. A canary value is added at the end of the local variables
in the stack (before the EIP). This value is unknown to
the attacker.

2. At the end of the function call, before returning to the
saved EIP, the canary value’s integrity is checked. If it
has been modified, execution will halt and the attack is
unsuccessful.

In the case of our ROP attack, we cannot overwrite the EIP
without modifying this canary value, thus the attack will not
work.

4.6 Address Space Layout Randomisation
Our attack is ineffective with ASLR enabled for the target
binary in Linux. The test binaries used were all compiled
with -static which disables the generation of a Position In-
dependent Executable (PIE) and thus relocation of the .text
segment for this program (some things, such as the library
code, are always randomly relocated [15]).

ASLR prevents the success of a ROP attack by making the
memory locations of the ROP gadgets differ run to run [11,
10]. This means we cannot hard-code these locations into our
ROP chain. ASLR must be enabled for every module used
in the target, lest a ROP exploit be formed around those for
which it was not [16].

Even ASLR is not infallible – a memory disclosure ex-
ploit can be used to map the memory locations of gadgets
even with ASLR enabled and generate a ROP chain on the
fly [17]. Targets will not necessarily always be PIEs due to
the performance cost [18], or lack of implementation.

5

https://www.exploit-db.com/exploits/44331

5 Appendix

5.1 Objectives of the Proposal

We successfully completed objectives 1-3 identified in Sub-
section 3.2-Subsection 3.4.

We were not able to complete Step 4 of our original pro-
posal (as detailed in Subsection 3.5), however we did research
the area extensively and learnt a lot. We made attempts to
start part 4, mostly consisting of reasoning about and planning
a solution. We found that it was just too complex for us to
be able to complete it in the given timeframe, and ended up
mostly focussing on researching the issue and understanding
how it could be implemented with more time. We tried to
think of a limited solution to this task, but we could not think
of a restricted feature set that would work properly – the task
felt all or nothing if it was to work on multiple binaries and
shellcodes.

5.2 Individual Contributions

We had an issue in the first week with illness - two of the
group members (who live together) fell ill with mild flu-like
symptoms. Whilst we were still able to work, it was at a
slower pace and for fewer hours each day. After the first week,
everyone was in good health again.

We did not find the programming task to be easily paral-
lelisable. We worked together using VS Code Live Share on
the programming. This ensured we all had a complete un-
derstanding of the solution, and enabled us to combine our
differing knowledge areas. Research and report writing was
conducted more in parallel, but each member again made an
equal contribution.

Thus, all members made an equal total contribution to the
project:

• Jack Bond-Preston: 33%
• Liam Dalgarno: 33%
• Chris Gora: 33%

6 Glossary

AMD NX AMD’s No-eXecute bit technology preventing
memory from being both writeable and executable. Also
known as Enhanced Virus Protection (EVP).

clobber To modify a register that you did not specifically
want to modify. Often caused by a gadget having extra-
neous instructions to the instruction(s) you are utilising
the gadget to execute.

gadget A select sequence of instructions followed by a return,
from the target program. These are chained together to
execute useful code.

Intel XD Intel Execute Disable. Intel’s No-eXecute bit tech-
nology preventing memory from being both writeable
and executable.

setuid A Unix access flag which can be set on files, directo-
ries, and executables. If set on an executable, users will
execute it with the privileges of the owner.

shellcode A malicious code payload, often with the aim of
spawning a shell for the attacker to abuse.

7 Acronyms

ASLR Address Space Layout Randomisation.

EIP Extended Instruction Pointer.

ELF Executable and Linkable Format.

PE Portable Executable.

PIE Position Independent Executable.

ROP Return Oriented Programming.

SSP Stack Smashing Protection.

8 References

[1] Hovav Shacham. “The Geometry of Innocent Flesh
on the Bone: Return-into-Libc without Function Calls
(on the X86)”. In: Proceedings of the 14th ACM
Conference on Computer and Communications Secu-
rity. CCS ’07. Alexandria, Virginia, USA: Association
for Computing Machinery, 2007, pp. 552–561. ISBN:
9781595937032. DOI: 10.1145/1315245.1315313.

[2] Aleph One. “Smashing the Stack for Fun and Profit”.
In: Phrack 7.49 (Nov. 1996). URL: http : / / www .
phrack.com/issues.html?issue=49&id=14.

[3] Thomas Dullien, Tim Kornau, and Ralf-Philipp Wein-
mann. “A Framework for Automated Architecture-
Independent Gadget Search”. In: WOOT’10. Wash-
ington, DC: USENIX Association, 2010, p. 1.

[4] A. Bittau et al. “Hacking Blind”. In: 2014 IEEE Sym-
posium on Security and Privacy. 2014, pp. 227–242.
DOI: 10.1109/SP.2014.22.

[5] “Microgadgets: Size Does Matter in Turing-Complete
Return-Oriented Programming”. In: 6th USENIX Work-
shop on Offensive Technologies (WOOT 12). Belle-
vue, WA: USENIX Association, Aug. 2012. URL:
https://www.usenix.org/conference/woot12/
workshop-program/presentation/Homescu.

6

https://doi.org/10.1145/1315245.1315313
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://doi.org/10.1109/SP.2014.22
https://www.usenix.org/conference/woot12/workshop-program/presentation/Homescu
https://www.usenix.org/conference/woot12/workshop-program/presentation/Homescu

[6] C. Ntantogian et al. “Transforming malicious code to
ROP gadgets for antivirus evasion”. In: IET Informa-
tion Security 13.6 (2019), pp. 570–578. DOI: 10.1049/
iet-ifs.2018.5386.

[7] Garrett Gu and Hovav Shacham. Return-Oriented
Programming in RISC-V. 2020. arXiv: 2007.14995
[cs.CR].

[8] Rik van Riel and Shen Feng. Documentation for
/proc/sys/fs/*. 2009. URL: http://web.archive.
org/web/20200708133511/http://www.kernel.
org/doc/Documentation/sysctl/fs.txt (visited
on 12/05/2020).

[9] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. “Q: Exploit Hardening Made Easy”. In: Pro-
ceedings of the 20th USENIX Conference on Security.
SEC’11. San Francisco, CA: USENIX Association,
2011, p. 25.

[10] Sebastian Krahmer. “x86-64 buffer overflow exploits
and the borrowed code chunks exploitation technique”.
In: (Oct. 2005). URL: https://users.suse.com/
~krahmer/no-nx.pdf.

[11] H. M. Gisbert and I. Ripoll. “On the Effectiveness of
NX, SSP, RenewSSP, and ASLR against Stack Buffer
Overflows”. In: 2014 IEEE 13th International Sympo-
sium on Network Computing and Applications. 2014,
pp. 145–152. DOI: 10.1109/NCA.2014.28.

[12] Tim Kornau et al. “Return oriented programming for
the ARM architecture”. PhD thesis. Master’s thesis,
Ruhr-Universität Bochum, 2010.

[13] Erik Buchanan et al. “When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC”.
In: CCS ’08. Alexandria, Virginia, USA: Association
for Computing Machinery, 2008, pp. 27–38. ISBN:
9781595938107. DOI: 10.1145/1455770.1455776.

[14] Bruno Bierbaumer et al. “Smashing the Stack Pro-
tector for Fun and Profit”. In: ICT Systems Security
and Privacy Protection. Ed. by Lech Jan Janczewski
and Mirosław Kutyłowski. Cham: Springer Interna-
tional Publishing, 2018, pp. 293–306. ISBN: 978-3-
319-99828-2. DOI: 10.1007/978-3-319-99828-
2_21.

[15] Hector Marco Gisbert and Ismael Ripoli. “On the Ef-
fectiveness of Full-ASLR on 64-bit Linux”. English. In:
In-depth Security Conference 2014 (DeepSec) ; Con-
ference date: 18-11-2014 Through 21-11-2014. Nov.
2014. URL: https://deepsec.net/archive/2014.
deepsec.net/index.html.

[16] Nicholas Carlini and David Wagner. “ROP is Still Dan-
gerous: Breaking Modern Defenses”. In: 23rd USENIX
Security Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, Aug. 2014, pp. 385–399.
ISBN: 978-1-931971-15-7. URL: https : / / www .
usenix . org / conference / usenixsecurity14 /
technical-sessions/presentation/carlini.

[17] K. Z. Snow et al. “Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout
Randomization”. In: 2013 IEEE Symposium on Secu-
rity and Privacy. 2013, pp. 574–588. DOI: 10.1109/
SP.2013.45.

[18] Mathias Payer. Too much PIE is bad for performance.
en. Tech. rep. Technical Reports D-INFK. Zürich, 2012.
DOI: 10.3929/ethz-a-007316742.

7

https://doi.org/10.1049/iet-ifs.2018.5386
https://doi.org/10.1049/iet-ifs.2018.5386
https://arxiv.org/abs/2007.14995
https://arxiv.org/abs/2007.14995
http://web.archive.org/web/20200708133511/http://www.kernel.org/doc/Documentation/sysctl/fs.txt
http://web.archive.org/web/20200708133511/http://www.kernel.org/doc/Documentation/sysctl/fs.txt
http://web.archive.org/web/20200708133511/http://www.kernel.org/doc/Documentation/sysctl/fs.txt
https://users.suse.com/~krahmer/no-nx.pdf
https://users.suse.com/~krahmer/no-nx.pdf
https://doi.org/10.1109/NCA.2014.28
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1007/978-3-319-99828-2_21
https://doi.org/10.1007/978-3-319-99828-2_21
https://deepsec.net/archive/2014.deepsec.net/index.html
https://deepsec.net/archive/2014.deepsec.net/index.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.1109/SP.2013.45
https://doi.org/10.3929/ethz-a-007316742

	Introduction
	Background
	Existing Tools

	Design & Implementation
	Step 0
	Step 1
	Step 2
	Step 3
	Step 4
	Q

	Evaluation
	Automation
	Arbitrary Execution
	Non-Executable Stack
	Target Support
	Stack Protector
	Address Space Layout Randomisation

	Appendix
	Objectives of the Proposal
	Individual Contributions

	Glossary
	Acronyms
	References

