
September 24–25, 2024| Montreal, Canada

#DPDKSUMMIT



OpenSSL PMD: Analysis 

and Optimisations

Jack Bond-Preston, Arm and Honnappa Nagarahalli, Arm



Introducing the CFP Author

Jack Bond-Preston

Software Engineer

Arm

Jack is a Software Engineer at Arm, which he joined after graduating with 

a degree in Computer Science from the University of Bristol.

Jack's main interests in the field include networking, performance 

engineering, software profiling, and security.

Jack's first major contributions to the DPDK project were the OpenSSL 
changes detailed in this presentation. Since then, Jack has also taken 
maintainership of several minor DPDK components: Bitops, ARMv8 

Crypto, and Ticketlock.

Due to travel constraints, Jack can't travel to the DPDK Summit this year.



Background



Existing DPDK software crypto PMDs

- Utilises the well-known OpenSSL 

library (widely packaged for 
distributions)

- OpenSSL supports an extremely large 

range of algorithms, although the 
DPDK PMD only supports a (still 

large) subset of these

- OpenSSL has a much heavier API 

than the other two libraries, due to 

providing a highly generic API to use 
across many algorithms, on many 

platforms

- OpenSSL is maintained by the 

community, and managed by the 

OpenSSL Corporation and Foundation

ARMv8 ipsec-mb OpenSSL

- Utilises either Intel's ipsec-mb library, 

or Arm's ipsec-mb library (fork)

- Arm's fork has a much more 

minimal set of supported algorithms 

compared with Intel's ipsec-mb: ZUC-
EEA3[-256] and SNOW3G-UEA2 

(both 3GPP ciphers)

- Has a thinner API than OpenSSL

- Arm platforms only

- Utilises Arm's AArch64cryptolib, 
which provides performant assembly 

implementations of crypto algorithms 

– making use of Arm-specific CPU 
instructions for acceleration, and 

optimised for specific cores.

- Supported algorithms: AES-GCM-

{128,192,256} and AES-CBC-128 

(with SHA-{1,256} HMAC 
authentication)

- Library is low-level, with a thin API

- Arm plans to deprecate this library, 

dropping future maintenance and 

support

https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/intel/intel-ipsec-mb
https://gitlab.arm.com/arm-reference-solutions/ipsec-mb
https://github.com/ARM-software/AArch64cryptolib


What are the problems, in the context of Arm platforms?

● High level of fragmentation
oDepending on which crypto algorithm you wish to use, you may need/want to use different 

PMDs.

● AArch64cryptolib deprecation
oAarch64CryptoLib is a prime candidate for deprecation, however the replacement needs to 

have similar performance.

oThe replacement needs to have similar performance, otherwise users won't want to switch.

● OpenSSL PMD performance is suboptimal
oOn first look, the OpenSSL PMD performance seems to be much worse than the others.

oMore on this later...



What are the solutions? 

● High level of fragmentation

oTry to reduce the number of SW Crypto PMDs, consolidating algorithm support into fewer 

libraries – deprecation of Armv8 Crypto PMD.

● AArch64cryptolib deprecation

oEnable support in the OpenSSL PMD for the algorithms supported by Armv8 crypto PMD, 

with comparable performance.

● OpenSSL PMD performance is suboptimal

oOptimise the OpenSSL PMD implementation, within DPDK.

oOptimise the OpenSSL library itself, especially by adding performant assembly 

implementations of common algorithms (utilising AArch64 cryptography instructions where 

possible, for AArch64cryptolib parity).



DPDK OpenSSL PMD Performance



Previous state of OpenSSL PMD 

● The OpenSSL PMD is not often updated
oVendors/users are largely focussed on other PMDs, such as ipsec-mb or hardware crypto 

PMDs.

oChanges and bugfixes have been made in the past, without prioritising performance and/or 
correctness.[1]

● The PMD already supported the algorithms provided by the ARMv8 PMD, 
however the performance was much lower.

oThe OpenSSL PMD was spending much less time in the actual crypto assembly 
implementation, compared with the ARMv8 crypto PMD.

oIn AArch64cryptolib the assembly implementation of the algorithm itself interleaves crypto 
and auth operations. OpenSSL doesn't do this optimisation.

[1] e.g. 75adf1e (introduced a bug), 6b283a0, 67ab783 (fixed bugs but introduced performance hits)

https://github.com/DPDK/dpdk/commit/75adf1eae44f7df4e860c8f2e00918eb559236d2
https://github.com/DPDK/dpdk/commit/6b283a03216e120a697a0006341b3ab633e6a82c
https://github.com/DPDK/dpdk/commit/67ab783b5d70aed77d9ee3f3ae4688a70c42a49a


Throughput: ARMv8 PMD vs OpenSSL PMD



OSSL PMD Flamegraph (AES-128-CBC-HMAC-SHA1 Enc, 8 lcores)

In green are the actual cipher/auth algorithm implementations, which we want to be consuming the most cycles

[…]



ARMv8 PMD Flamegraph (AES-128-CBC-HMAC-SHA1 Enc)



Optimising the DPDK OpenSSL PMD



EVP_CIPHER_CTX management 
OpenSSL is interfaced with using the EVP (EnVeloPe) API. This provides access to a wide variety of operations through a 

unified API

EVP_CIPHER_CTX structures (cipher contexts) store the cipher state:

● This context roughly maps onto one IPsec tunnel.

● The contexts contains things like the cipher implementation being used, the key, the IV, pending unciphered trailing buffer 

data, etc

● The context has a variety of states with a somewhat complex lifecycle. However, the standard lifecycle we use is:

DPDK stores the cipher context inside the OpenSSL session structure

● The OpenSSL session structure represents one flow – with one key, cipher type, direction, etc.

● DPDK previously created a duplicate of the cipher context for every (encrypt/decrypt) operation. This was 

because cipher contexts are not thread safe. One session can be shared across multiple worker threads, so using 

the cipher context from the session structure, without cloning it, will lead to issues



Reducing frequency of cipher context duplication

● Duplicating the cipher context per-buffer can be very expensive, especially for smaller buffer sizes 

where the crypto operation itself takes up less time

● We can use an alternate approach: maintain a per-queue-pair cipher context clone, which has a 
lifetime across the whole session

● Queue-pairs can only be used from one thread at a time, so this prevents thread-safety issues. We use per-queue-

pair instead of per-lcore as [# QPs allocated to PMD] should be <= [# total lcores]

● This will increase memory usage (as the lifetime for these clones expands), but drastically reduce the amount of 

(expensive) cipher context duplications that need to be performed

● This also prevents a multi-threading performance issue that keen-eyed people may have spotted in the 
flamegraph

● Each cipher context clone is extra expensive in a multithreaded use-case. This is due to a globally 

maintained EVP_CIPHER instance inside the EVP_CIPHER_CTX, which uses refcounting to handle its lifecycle. 

Regularly cloning EVP_CIPHER_CTXs (and thus the contained EVP_CIPHERs) thrashes the refcount and ruins 

performance scaling. This explains time spent in __aarch64_ldadd4_relax in the hotspot analysis

● Not cloning the cipher context per-buffer negates this issue



Status

● The aforementioned approach was implemented as a patchset for the DPDK 

OpenSSL PMD
● Performance increases for most algorithms are quite large, especially for smaller buffer sizes 

(where the overhead of the cloning is a larger percentage of runtime)

● Throughput uplift ranging from ~1000% increase (8 lcores, 32B buffers) to 5% (1 lcore, 8192B 
buffers)

● Patchset accepted and ships as part of DPDK release 24.07.
● Thanks all for feedback and reviews, especially Nick Connolly and Wathsala Vithanage from Arm, 

and Kai Ji and Akhil Goyal from the DPDK community

● Users of the OpenSSL PMD across all platforms should now be able to see crypto speedups with 
no code changes necessary

https://patches.dpdk.org/project/dpdk/list/?series=32383&state=%2A&archive=both
https://patches.dpdk.org/project/dpdk/list/?series=32383&state=%2A&archive=both


Throughput: ARMv8 PMD vs Optimised OpenSSL PMD



Optimising the OpenSSL AES-CBC-HMAC-

SHA Implementation



Summary

1) AArch64cryptolib already has a well-optimised implementation of interleaving AES-CBC-

HMAC-SHA

oThis algorithm combines encryption (AES-CBC) and authentication (HMAC-SHA)

oThe implementation using interleaving, which means we perform the encryption and authentication together, instead of 

fully encrypting then fully authenticating

2) Arm took this assembly implementation and created a PR to add this to OpenSSL
oAlso slightly optimised the routine by taking advantage of some AES instruction fusing – so the implementation should 

perform a little better than AArch64cryptolib's

3) A patch to DPDK is needed to integrate this into the OpenSSL PMD
oThere are some difficulties here - should this be provided to the user as a separate algorithm (interleaved AES-CBC-

HMAC-SHA), or transparently used when the user selects the existing AES-CBC encryption algorithm combined with 

existing HMAC-SHA authentication algorithm?



Problems with integrating into DPDK's PMD

● The initial implementation doesn't support partial updates

●Normally, DPDK takes advantage of the ability of OpenSSL to supply buffer data in multiple segments 
(partial updates), by repeatedly calling EVP_CipherUpdate()

●This isn't supported for Arm's initial port of interleaving AES-CBC-HMAC-SHA (since AArch64cryptolib 
never supported this)

●There is no way for the PMD to inform the user that this isn't supported, on a per-algorithm basis. The 
only option would be to error out on segmented buffers with this particular algorithm combination, and 
document that it isn't supported. However, if we want to transparently use interleaving without making 

the user select it, this would represent a feature regression.

● Solution: implement support for partial updates in OpenSSL's implementation 

ourselves



21 Confidential © 2024 Arm

Background: AES-CBC

AES-CBC is a block cipher used to encrypt/decrypt data. AES (Advanced 

Encryption Standard) is the cipher algorithm, and CBC is the mode of operation 
(Chained Block Cipher).
• Data is processed block-by-block, with the output of one block forming an input to the next 

block

• The first block takes an IV (Initialisation Vector). For subsequent blocks, the algorithm takes 

the cipher output of the previous block

• Due to this dependency, CBCs are poorly parallelisable

• AES can take key sizes of either 128, 192, or 256 bits.

By Epachamo - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=147126044



Implementing partial updates

● AES-CBC encryption and SHA authentication both process data in set block sizes.

●OpenSSL supports buffering trailing data and only providing the algorithm with multiples of its block size (until 

the CipherFinal() call)

●However, the block sizes are different: AES-CBC uses 128b/16B blocks, and SHA 

uses 512b/64B, 512b/64B, 1024b/128B blocks for SHA-1, SHA-256, and SHA-512 respectively

●Solution: Increase the block size of the interleaved cipher + auth to the size of the respective SHA algorithm used, to 

ensure the data processed always meets the minimum block size

● We need to store some intermediate state to ensure the multiple buffers are treated 

as segments of the same buffer by the algorithm.

●For AES-CBC, need to store the output of each chunk of ciphered data, and pass it to the next chunk.

●For SHA-HMAC, need to save the internal SHA state at the end of the chunk, and use it as the initial state for the next 

chunk.

●Solution: store inside the algorithm specific struct, inside the cipher context.



DPDK integration: remaining issues

One problem remains: the new approach cannot handle mismatched 
authentication and cipher offsets.

• Previously we asked OpenSSL to do the cipher and auth operations individually, so it was trivial to 

use a different offset for each.

• This is very hard to implement with interleaving operations, and OpenSSL doesn't really have 
the API features to allow this anyway.

• We probably still need to make the user request the interleaving version of the algorithms, and state 
that this isn't supported for these in the documentation. Alternatively, we can fall back to re-

calculating the auth after the interleaved operation finishes (slower, but produces correct results –
may be acceptable if only a few ops use mismatched offsets)

• It would be good to understand the typical usecase for mismatched authentication and cipher offsets. 
Any opinions on ideal solutions for this issue, from the DPDK crypto PMD side?



24 Confidential © 2024 Arm

Status

Arm's patches are upstreamed on Github as an OpenSSL PR, pending merge

oHopefully targeting October's OpenSSL release

oThis does not include partial update support, which will be upstreamed later (still needs some 

final work internally)

• Once these changes are eventually merged into OpenSSL releases, support for 

the features can be upstreamed for DPDK

o A work in progress patch has been started inside Arm for this support, but some issues are still 

pending (e.g. the mismatched auth and cipher offset issue)

https://github.com/openssl/openssl/pull/22949


Throughput: ARMv8 PMD vs Optimised OpenSSL PMD w/ Interleaving



Future Work and Considerations



Future Work

● More algorithms can be supported fairly easily by the DPDK PMD (where 
support already exists in OpenSSL).

●Just a case of plumbing through various DPDK crypto PMD API aspects and utilising the OpenSSL 
EVP API correctly.

● There may be some room to improve OpenSSL's performance more.
●One major area is EVP parameter handling. This is all string-based and performs a lot of string 

comparisons on every parameter set/get operation. Plans and work are underway in the OpenSSL 
project to improve this.

●Some investigations into whether the performance of the OpenSSL API can be improved are ongoing 
within Arm, too.

https://github.com/openssl/project/issues/354
https://github.com/openssl/project/issues/354


AArch64cryptolib/ARMv8 PMD Deprecation Discussion



September 24–25, 2024| Montreal, Canada

#DPDKSUMMIT



Addendum: Throughput charts for all PMD iterations


	Slide 1
	Slide 2: OpenSSL PMD: Analysis and Optimisations
	Slide 3: Introducing the CFP Author
	Slide 4: Background
	Slide 5: Existing DPDK software crypto PMDs
	Slide 6: What are the problems, in the context of Arm platforms?
	Slide 7: What are the solutions? 
	Slide 8: DPDK OpenSSL PMD Performance
	Slide 9: Previous state of OpenSSL PMD 
	Slide 10: Throughput: ARMv8 PMD vs OpenSSL PMD
	Slide 11: OSSL PMD Flamegraph (AES-128-CBC-HMAC-SHA1 Enc, 8 lcores)
	Slide 12: ARMv8 PMD Flamegraph (AES-128-CBC-HMAC-SHA1 Enc)
	Slide 13: Optimising the DPDK OpenSSL PMD
	Slide 14: EVP_CIPHER_CTX management 
	Slide 15: Reducing frequency of cipher context duplication
	Slide 16: Status
	Slide 17: Throughput: ARMv8 PMD vs Optimised OpenSSL PMD
	Slide 18: Optimising the OpenSSL AES-CBC-HMAC-SHA Implementation
	Slide 19: Summary 
	Slide 20: Problems with integrating into DPDK's PMD
	Slide 21: Background: AES-CBC
	Slide 22: Implementing partial updates
	Slide 23: DPDK integration: remaining issues
	Slide 24: Status
	Slide 25: Throughput: ARMv8 PMD vs Optimised OpenSSL PMD w/ Interleaving
	Slide 26: Future Work and Considerations
	Slide 27: Future Work
	Slide 28: AArch64cryptolib/ARMv8 PMD Deprecation Discussion 
	Slide 29
	Slide 30: Addendum: Throughput charts for all PMD iterations 

